What is Sustainable Design?

Design is a broad, complex industry that isn’t well understood in mainstream culture. Industrial design, our specialty, is especially vast. In our new AMA (Ask Me Anything) series, industrial designer Rebeccah Pailes-Friedman answers questions about design and process from Instagram and LinkedIn. Do you have any questions about design? Let us know!

Rebeccah is the founder of Interwoven Design Group (that’s us!), an interdisciplinary design consulting practice that creates innovative, thoughtful and efficient products. She has over 25 years of corporate design experience and has held positions as Design Director for Fila, Champion and Nike. She is the author of Smart Textiles for Designers: Inventing the Future of Fabrics, is one of the founding partners of Space Exploration Architecture (SEArch+), and speaks internationally on design, innovation and the future.

Watch the video or read the transcript below for Rebeccah’s definition of sustainable design.

What is sustainable design?

Hi, I’m Rebeccah from Interwoven Design Group, and today you can ask me anything. The question that we’re going to work on today is: What exactly is sustainable design? 

The basic objectives of sustainability are to reduce consumption of non-renewable resources, minimize waste, and create healthy, productive environments.  All of these objectives start in the design process. As designers we have a responsibility to prioritize these objectives when we work through any design process.  But the biggest challenge is when a client’s fiscal and sales goals are out of alignment with these objectives. The four pillars of sustainability are: people, environment, profit and culture. Ideally, as designers we are most effective when we can achieve these goals and meet or exceed a clients’ needs.

If you’re curious about what we do here at Interwoven, you can get in touch. We’d love to hear from you. You can follow us on Instagram @interwoven_design or you can go to our website at getinterwoven.com.

Watch the video or read the transcript below for Rebeccah’s definition of sustainable design.

Want to know more?

Here at Interwoven Design our design niche is the intersection of soft goods and wearable technology. We explained what soft goods design is, and you can check out our Insight article on wearable technology to learn more about that aspect of our work.

Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

How to Incorporate Sustainability into Design

How to Incorporate Sustainability into Design

Overflowing landfills, giant islands of plastic floating in the ocean, the rise in material culture and consumerism, climate change, and more have alerted us as a planet to the importance of sustainable design. Our actions as individuals, as companies, as municipalities, all impact the health of the environment and the living beings it supports, including humans. What is sustainable design, and how do we incorporate sustainability into design? Fortunately there are a lot of sustainable strategies for designers, and many ways they can minimize and even reverse their impact.

The UN Sustainable Development Goals give an excellent overview of key sustainable impact areas to consider across industries. Image via un.org.

What is sustainable design?

Sustainable design is an approach to design that demonstrates key principles of sustainability, which are mainly concerned with minimizing the depletion of natural resources and increasing product lifespans. There are many strategies for achieving these goals, though any given product labeled as being ‘sustainable’ may feature one, several, or (sadly) none of these strategies.

Sustainable impact is calculated by reviewing the impact of the product in four areas: ecological damage, human health damage, resource depletion, and social impact. Sustainable designers ask themselves what the impacts in these four categories might be at each stage of product development, and how they might be minimized or avoided. They do life cycle assessments to determine those impacts precisely, and to compare the impact of one product to another.

The Product Life Cycle

The product life cycle includes four main stages:

  1. Raw materials: the impact of extracting raw materials
  2. Manufacturing: the impact of manufacturing the product, including material processing, transportation and factory processes
  3. Use: the impact of consumer usage of the product, including the potential duration of use
  4. End of Life: the impact of disposing of the product, including the potential for recycling and material recapture
The product life cycle helps designers calculate potential impacts at each stage. Image via pre-sustainability.com.

You will sometimes see the product life cycle split into 5 or 6 stages but they are all fundamentally the same. Sustainable design looks at each of these stages and reviews the potential for impact in each of the four impact categories above. Does the extraction of the raw materials involve human health damage? Does the use of the product harm the environment? Can the materials be recaptured at the end of life, or do they constitute permanent resource depletion? 

This framework aids the designer in decision-making at every stage. While there is always some degree of impact, decisions about what materials to use, the durability and source of those materials, the form and assembly of the product, the manufacturing processes involved, and many more.

The Sustainability Toolbox

Here are some of the key tools in the sustainable design toolbox. This is not a comprehensive list but includes the tools we find especially powerful. You’ll notice that many of them reference and depend on one another, and this is no coincidence. Many of the tools support and facilitate the use of additional tools. While it may not be possible to implement all of them, it is always possible to take advantage of sustainable strategies to participate in responsible design. More and more designers agree that it is irresponsible not to consider these strategies. Many of the decisions that influence social and environmental impacts are controlled in the early design phases of the product, well before it gets to the consumer. This is where we have the most power to make a difference.

Materials & Use


If you review life cycle assessments, you’ll quickly see an unsurprising pattern emerge: fewer materials means fewer impacts. It’s a pretty reliable guideline. Considering the volume of material needed for a product and making an effort to minimize that volume is a great way to lower its impact. Could your form be streamlined in some way? Play with the structure to learn the smallest amount of material you can use while preserving functionality.


Longevity is not only about durability, though this is of course important to allow a product to survive over time. Longevity means that, for whatever reason, people want to keep your product over the course of their lives. They want to treasure it and pass it on to others. Perhaps the product can be repaired or rarely needs to be replaced. Duration of use is an incredibly powerful metric in impact calculations, spreading the impact over decades.


Designing a product to be recyclable is a tricky proposition, in part because the recycling system is limited and varies from one region to another, and in part because it depends highly on being able to isolate component materials at the end of life. It requires thinking about the key materials of the product, how they will be assembled, any adhesives or hardware that may be involved, and whether or not they can be disassembled. While it may not be possible for every element of the design to be recycled, the fraction that can could be improved with thoughtful material and manufacturing choices.

Production Strategies


‘Design for disassembly’ is a popular phrase in the industry at the moment, and for good reason. This design approach creates products that are built to be disassembled at the end of life to facilitate recycling. Many of the hurdles of recycling arise from materials that are theoretically recyclable in isolation but impossible to handle when indefinitely bonded to another material. It can make repair an easier service option for the product as well. Many products, especially those with technological elements, lock the user out upon failure or end of life. Design for disassembly solves this problem of access and empowers the user to maintain and repair the product as needed.


Modularity allows a product to be reconfigured to suit the needs of the user. It is tied to longevity, disassembly, repairability, and recyclability. A piece of furniture that is modular is more likely to work in multiple homes across a user’s lifetime. A modular storage system is more likely to have a damaged element replaced than to be discarded altogether. This approach is compatible with a service model of design as well.


Objects that can be repaired have an exponentially longer lifespan than those that cannot. Think about clothing and shoes from the turn of the century, products that would serve the user for decades and still be passed on. This strategy is tied to disassembly, longevity, modularity, and service models. It can be achieved through empowering the user to repair the product themselves, or it can be part of a service system that is offered by the producer.

Service Models

Single-use products are a major contributor to landfill waste, and circular systems that allow users to share a product or service give a product a more productive lifespan, serving far more users. Citibike is a great example of a service model, it allows users to borrow bikes when they need them, and users who rarely bike don’t need to purchase a bike they won’t use. That the product stays under company ownership means that they have a lot of control over how the product is maintained over time and disposed of at the end of life. The responsibility for the product is shared between the owner and the user.

Producer + Consumer Responsibility


While warranties are available for certain categories of products, they are rare in commercial goods and very rarely extend to cover the entire lifetime of the product. Increasing producer responsibility is one tool to discourage design for obsolescence or rapid failure. When the producer gets the product back at the end of life, suddenly many opportunities for recycling, repair, material recapture, and re-manufacturing emerge. 


Products that can be repurposed for alternate uses once their original function has been fulfilled, or perhaps in concurrence with their original function, offer the user versatility and efficiency. Perhaps it is not the entire product but a specific component that has a second or third life after the first. These strategies are often discovered by consumers out of innovation or convenience, like a damaged cup or bowl that can be repurposed for organization and storage, but they can be planned by the designer as well.

Try it!

The strategies don’t stop here but we hope this gives you a taste of what sustainable design can look like. Consider these strategies, and assess their potential for use in your design projects. Assess your own purchases for signs of these tools in use. It can be challenging but it can also trigger great innovations and a fundamentally better design. It is deeply rewarding to create and support sustainable design.

Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

Books on Sustainability and Climate Change

The Smart List is a monthly list of multi-media recommendations on everything design, curated by Interwoven Design. In this issue we share three great books on sustainability. Being educated about sustainability is now a critical part of being an industrial designer. It helps us understand why our projects need to incorporate sustainable design practices wherever possible. That said, it’s hard to feel educated about it when the topic of sustainability is so overwhelming. The way we talk about it is often too vague to feel real or relevant to our everyday lives. These books, and others like them, tell specific, vivid stories that bring the reality of the need for sustainable design to life. They take a vague idea like “impact” and give it weight and dimension. These compelling stories help connects the dots between theory and practice.

The Smart List: Books on Sustainability & Climate Change

The World Without Us

by Alan Weisman

Many books about the environment catalog case studies of the impacts that our human activities are having on the planet. They are warning signals, threatening impending disaster if we don’t change our ways. In The World Without Us Alan Weisman takes an entirely different and fresh approach in which the human species is eliminated in the opening pages and the remainder of the book is spent painting a picture of how the Earth will adapt and develop without us. 

Weisman works from expert interviews with engineers, zoologists, astrophysicists, and more. He also uses present-day examples of sites that have been abandoned by civilization like Chernobyl as jumping off points for his speculative future. He uses the concept of a loud, conspicuous absence to tell the story of our impact. Our intricate civil infrastructures would collapse and be subsumed into nature, erosion and underground flooding would cause our cities to crumble, and the entire planet would undergo a process of re-wilding. What would remain of human civilization? What would be the most lasting of our contributions to the planet? Weisman answers these questions and many more.

The Sixth Extinction: An Unnatural History

by Elizabeth Kolbert

Mass extinctions are planetary events wherein diversity of life drops exponentially. There have been five mass extinctions in the last half billion years, and scientists today say we are in the midst of the sixth, predicted to be the worst since an asteroid took out the dinosaurs. Of all the species that have existed, scientists estimate that perhaps 1% remain. The instigating event for this particular mass extinction? Humans. 
In The Sixth Extinction, New Yorker writer Elizabeth Kolbert highlights the growing mountain of endangered species, like Panama’s emblematic golden frog, including stories of many that have gone extinct on our watch. She outlines the nature of extinction with historic examples like the American mastadon, giving the reader a foundation for understanding the evolutionary and ecological frameworks around species extinctions. She then narrates her adventures with experts in dozens of fields including botany, biology, and geology. She writes vividly and with compelling clarity to highlight these quiet disappearances happening all around us, all over the world, each a study in human impact, influence, and power.

Silent Spring

by Rachel Carson

Silent Spring was serialized in The New Yorker in the summer of 1962, and published in book form that fall. Rachel Carson’s passionate, ominous warning instigated immediate national debate about the use of chemical pesticides and to what extent science, corporations, and governments were responsible for their effects on the environment. 

Carson’s research outlined how insecticides, weed-eradicating chemicals, and agricultural sprays were leaching into food and water sources, endangering ecosystems and human communities alike. Her revolutionary text kicked off a grass-roots movement to preserve the environment through local and national regulations, and was the cry that brought environmental awareness to the attention of the public. Silent Spring is considered one of the most important books of the twentieth century and, though it is now 60 years old, holds up as a social alarm and a call to action, a critical catalyst for the modern day environmental movement.

Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

Checkerspot: Sustainable Prototyping Materials

At Interwoven Design we like to incorporate sustainability into our process wherever possible, and this includes sustainable prototyping. In this article we outline our casting process and review the Checkerspot Pollinator Kit, a renewable polyurethane resin that can be used for casting. Our clients rely on us to develop innovative solutions quickly and economically, which means that we move from sketches to prototyping quickly. We iterate potential design directions in-house to reduce turnaround time and keep product development costs low. Making urethane casting molds in-house allows us to do small batch prototyping and testing at a low cost before sending a more resolved solution out to a casting or injection-molding contractor, saving our clients time and money.

How does the casting process work?

Once a design direction has been finalized and is translated into 3D CAD (Computer Aided Design) software, we choose one of two casting strategies:

  1. We design and 3D print a mold based on the negative of the component
  2. We 3D print the component itself and then make a mold from it

The approach we choose is driven by the needs of the final component and the intended manufacturing material. If the final component is meant to be flexible or semi-rigid, like a high density foam part, we print the mold, as a flexible component can be removed from a rigid mold. If the final component is intended to be rigid, we print the part and cast a mold from it, as a flexible mold can be removed from a rigid component.

Once approach is set, the two-part urethane is mixed in the directed ratio to start the chemical reaction that cures the material, turning it from liquid to solid. If we want to tint our resin to more closely approximate the final product, we tint the parts before combining them as urethane can set quickly. The mix is poured carefully into the mold, trying to avoid bubbles that could detract from the final casting. The curing time can vary but it’s good to leave the casting for the maximum time specified as thinner elements will cure more quickly than thicker ones. In later stages of development the casting may be sanded, painted, or finished in some other way to make the prototype feel as close to the final product as possible.

Interwoven Design casting a mold for a prototype.
Casting approach 1: Our design team uses a 3D printed mold to cast a high density foam component for a backpack.

Incorporating sustainable practices

We consider environmental impact throughout the design process, pushing for the products we design to be sustainable to the greatest degree achievable for a given project. Considering sustainability at every stage of a product development cycle is essential to discovering opportunities for environmentally thoughtful design. These stages include research, form, construction, material selection and sourcing, manufacturing, and more. In early stages of a project, finding sustainable strategies for a development phase can take extra time and be restricted by budgets and practical constraints within the project. 

Access to sustainable materials that facilitate low volume in-house casting is a game changer, as the more closely we can approximate final materials, the more accurate our product testing becomes. Not only does it allow our designers and clients to hold, wear and interact with the product, but it allows for high-fidelity field testing and validation. Depending on the product category, a client may choose to test products in-house with their own teams or outsource testing to a team of engineers. The ability to quickly generate and iterate prototypes that closely or precisely mimic the final material keeps testing costs down and helps projects stay on schedule.

Checkerspot Pollinator Kit
The Checkerspot Pollinator Urethane Casting Kit features sustainable packaging and an algae-derived polyurethane resin.

Checkerspot performance casting materials

Checkerspot is a company that focuses on sustainable, high-performance casting materials, serving makers, designers and fabricators. Their innovative materials feature over 50% bio-based, renewable content, challenging a market saturated with oil-derived materials. They manufacture materials by “optimizing microbes to manufacture unique structured oils produced in nature, but not previously accessible at commercial scale.” Each organism contains oil that can be extracted, these lipids are the key component to Checkerspot’s biomaterials. Optimizing the qualities of sustainable materials like algal oil allows for peak product performance for the intended user as well as the environment.

The Checkerspot Pollinator Kit

We had the opportunity to put Checkerspot’s Pollinator Series Cast Urethane to the test in our studio. Our designer’s appreciated the thought put into the labeling of the kit components and instructions for the mixing and casting processes. We also liked the smooth user interaction with the sustainable packaging design. When we poured the mix into our intricate mold, the materials cured evenly and captured fine details, proving that there is no need to sacrifice performance when using sustainable alternatives to mainstream oil-derived casting products.

There you have it!

Here at Interwoven we enjoy pushing the boundaries between design, sustainability, material science and technology. Playing with new materials invigorates our design process as well as our studio-practice. Have you tried working with a new sustainable material recently? Tell us about it! Prototyping sustainably with 3D printing and bio-based material casting is just one way we can participate in the movement towards more responsible, environmentally considerate design. 

Check out our Insight posts to learn more about what we do at Interwoven Design. Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

Design News N. 031

Design News Category Image

Design News N. 031

Design News is your tiny dose of design, technology and other important news, curated monthly by Interwoven Design. In this issue: we take a dive into commercialized bioplastic vinyl records, Pauline van Dongen and Tentech collaborate on solar-energy-generating textiles, Bali’s Sustainable Art Space, Patagonia’s disbursement of resources to save the environment and the On’s inspiring CleanCloud™ story. 

Evolution Music's Bioplastic Vinyl
Photo: Evolution Music, “Music Made Better”

Bioplastic 12-inch Vinyl by Evolution Music

Evolution Music’s bioplastic 12-inch vinyl may look and sound like a traditional record but is actually the world’s first bioplastic vinyl that is commercially available. ‘Evolution Music’ have spent over 4 years working on research and development to find the appropriate material to replace the harmful elements in Vinyl LP manufacturing. The decision to use plant based bio-polymers and organic master batch creates a non-toxic production process for the compound. In addition, the final product ‘Evo-Vinyl’ is completely biodegradable compostable according to DIN EN 13432 (European Standards). The team at Evolution also took great care to settle on a Bon Sucro certified supplier to ensure a completely sustainable approach.

via Dezeen Awards

Photo: Pauline van Dongen

Pauline van Dongen to “create a new aesthetic for buildings” with solar textile

Pauline van Dongen along with Tentech are reimagining and developing textiles that could be used to create a new exterior for future buildings. Suntex is a solar textile that is energy generating while also being durable and water-resistant. The Dutch designer explains the construction of the textile that includes weaving organic photovoltaic solar cells along with recycled polymer yarns.

via Dezeen Awards

Photo: Nathan Congleton

Earth is now Patagonia’s only Shareholder

The founder of Patagonia, Yvon Chouinard originally got into producing climbing gear for his friends, not to be a businessman. The company began by donating 1% of their sales each year to altering the company’s purpose into saving the planet. Instead of selling Patagonia or making the company publicly owned,  the company decided to “go purpose” and gave the nonvoting stock to the Holdfast Collective, a nonprofit dedicated to fighting the environmental crisis.

via Patagonia

 Photo: Tommaso Riva, MoSA, Museum of Space Available, in Bali

Bali’s new Circular Design Workplace

The Museum of Space Available (MoSA), was created when the pandemic struck and made the space available. Former creative director, Daniel Mitchell, envisioned this new system located in southern Bali. The coastal sustainable community features space available for artists, designers and bio innovation scientists that result in exhibitions including physical art installations as well as NFTs.

via Wallpaper

Photo: on-running.com 

The CleanCloud from On

The CleanCloud™ story is one of trial and tribulation deserves a round of applause for the innovation team at On. It began by the team questioning if the problem of carbon emissions be a part of the solution to step away from using fossil-based materials. On and Technip Energies targeted the materials used and production of EVA midsole foam which is commonly used in the sole of shoes. Through a collaboration with Fairbrics, the midsole’s polyester is also made from carbon emissions and the outsole is the result of an innovative partnership with Novoloop, making materials from plastic waste.


Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!