Soft Goods Prototyping

Soft Goods Prototyping

Soft goods design is its own special area of the design industry, and soft goods prototyping is similarly unique. At Interwoven Design we specialize in soft goods, so we make a lot of these prototypes. The process we use is particular to our studio, and to demonstrate why we like this method we’ll explain what is special about soft goods prototypes and walk you through the steps. This prototyping method can become a powerful tool even for designers who lack textile and sewing experience.

What is a soft goods prototype? 

Prototyping is an iterative process and starts with a combination of 2D sketches and 3D mockups. these first “prototypes” are to quickly asses a design idea and are used to study volume, form, access points and closures. Once the form is starting to become refined we then progress onto a higher fidelity mock-up. this article explains how we go from a paper mock-up to a fully resolved prototype that serves as a model for manufacturing. We call this final model a “high fidelity prototype”. It looks like a new product that is ready to take home and use.

The ability to create a high fidelity prototype from a pattern is the goal of soft goods prototyping.

The goal of the soft goods prototyping process is to develop a pattern that will result in a consistent, high fidelity end-result as well as to create that result to demonstrate the viability of the pattern. A key stage in this process is making a Muslin.

What is a Muslin?

We will use “Muslin” with a capital M to indicate the soft goods industrial design mock up in a basic textile as compared to the basic cotton “muslin” fabric that most often used in this process. A Muslin is a model of the design that has been sewn up in low resolution fabrics, not using final textiles, colors, or hardware. It is a specific stage of the soft goods prototyping process that helps us to test the accuracy and quality of our pattern before using final materials. A Muslin is a tool on the journey to developing a compelling prototype that allows us to work out any issues with the design before moving to final materials. It may or may not be literally sewn in muslin fabric, though it often is.

A Muslin (with a capital M) is a critical tool for testing the accuracy and suitability of a soft goods pattern.

The Brown Paper Pattern-making Method

But how do we move from a drwing and fast mock up to a pattern from which we can cut a Muslin? We use a process called the Brown Paper Patternmaking Method to create our soft goods patterns, a method developed by Interwoven Design’s principal designer Rebeccah Pailes-Friedman. In this method the designer sculpts a full scale model of the desired soft good in brown craft paper, marks it up, cuts it apart, and creates a pattern with it that is then sewn up and tested for accuracy and performance.

The Brown Paper Pattern-making Method allows a designer to go from a paper model to a high fidelity prototype with accuracy.

We’ll walk through the steps and show some examples to demonstrate the key concepts, but here is the overview of the process:

  1. Create a refined design drawing
  2. Sculpt a full scale craft paper model from the drawing
  3. Add seam lines, grain lines and cross marks
  4. Cut the model apart to create pattern pieces
  5. Transfer the craft paper pieces to pattern paper
  6. True the patterns and add seam allowance
  7. Transfer the pattern paper pieces to muslin 
  8. Sew up a Muslin and make any necessary adjustments to the pattern
  9. Sew up a final high fidelity prototype

The Steps

1. Ideate to create a refined design drawing. This process should involve 2D and 3D sketches to develop your design concept. Think about hardware, colors, and final materials as you create this drawing. Your design drawing should be a detailed and refined schematic that serves as a blueprint for the model making that will follow.  While some refinement will be possible in future stages, the drawing should be as close to a final design as possible.

A refined design drawing considers the final form, materials, colors, and features of the design.

2. From the design drawing, sculpt a full scale model in brown craft paper with masking tape or painter’s tape. Craft paper behaves a lot like a textile while holding its shape well, which is why we use it for this method. Creating the initial model is the most difficult step of the entire process. If you can get this step right, the rest of the process will flow naturally. Any adjustments that need to be made to the original concept will be made here. Anything represented in your sculpted model will be transferred to the final model, so make sure it is what you want.

Here are a few tips:

  • Starting from the “base” – sculpt the form of the model so that it looks as close as possible to the finished design – it should be the same scale and shape a your concept
  • Only use tape you can draw on. Use as much as you need.
  • Draw on your model as needed to show every detail: curves, closures, straps, pockets, handles, etc.
  • Refine your sculpture until it is airtight and exactly the form you want.
  • Edges should meet neatly with minimal to no overlap.
The full scale model in brown paper should be neatly and precisely constructed.

3. Once you are satisfied that the object fits and functions as desired, draw seam lines with a fine tip Sharpie.  Be sure to consider how 3 dimensional shapes will be created by joining flat pieces of fabric and draw a seam where the flat pieces join.  Think of how a basketball, baseball or tennis ball are made from flat pieces to create spheres. A noter good tips is to look at your own soft goods possessions to see how they are constructed.

Seam lines determine the practical construction of the form.

4. Mark grain lines (north-south lines that denote the grain of the fabric from which the bag will be made) on each of the brown paper model pieces. Add cross marks and labels to each of the pattern pieces. Cross marks will act as guides to rejoin the pattern pieces once you separate them.

Think of a pattern as a puzzle in 3 dimensions, create a guide for yourself so you can put the puzzle together again.  Cross marks are markings perpendicular to the seam lines that show where the components created by the seams connect. Give each of your pattern pieces good, descriptive label and be sure not to duplicate label names.  You can use photos to capture the construction and make a map of how the pieces fit together.

6. Cut the brown paper model apart. Be careful to cut the seam lines as straight and as neatly as possible. Use scissors or an Exacto knife to cut with precision and using a metal ruler where applicable to also help create clean lines.

IMPORTANT TIP: If your bag is symmetrical only cut the right half of the bag and leave the left half intact. You will be able to “reflect” your pattern to make a perfectly symmetrical pattern from only ½ of your model.

Adding grain lines, cross marks, and component labels ensures that you will be able to recreate the form once it is cut apart.

7. Transfer the brown paper model pieces onto pattern paper.  Double check that all of your seam lines are the same length by “walking” your seams on top of each other. This is “trueing” the pattern and ensures that the pattern will fit together with smooth seams when it is sewn up. Seams that are not the same length will not sew together correctly. There will be too much fabric on one side, and the final model will be messy. This can be avoided though careful review at the pattern stage. Be sure to transfer labels and cross-marks to the pattern paper. Once the pattern is reviewed for accuracy, add a seam allowance of ½”.

Cut with clean, careful lines to get the most accurate pattern possible from your model.

8. Transfer your pattern pieces to muslin (or your chosen mock-up fabric) and cut. In the studio, we use wax transfer paper and a tracing wheel to transfer the pattern accurately to the muslin. but you can also cut out the pattern pieces and trace them onto you fabric.

Accuracy and care is needed at every stage of this process to make sure the final result reflects the original model.

9. Sew up a Muslin and assess thoroughly. The Muslin is a test of your pattern, it allows you to resolve any issues before creating the final prototype. On the Muslin, you can add zippers, trims and plastic hardware so you can test how things work and feel. Make any adjustments needed and transfer them back to the pattern.

Once an initial Muslin is sewn and assessed, a second or third might be created to further refine the design. These changes are updated in the pattern.

10. Finally your pattern is ready for final fabric. Transfer the pattern to the back side of the final fabric, cut it out and sew up a high fidelity prototype in final materials. This final model proves the quality and viability of your pattern and it should look like it could be purchased and used immediately.

Once the Muslin demonstrates the viability of the pattern, a high fidelity prototype can be created.

Try it!

While it takes time and attention to use the Brown Paper Pattern-making Method, it is a wonderful way for those unfamiliar with pattern-making to create original patterns that can provide consistently professional results. Do you have a soft goods design idea you’ve wanted to bring to life? Try this prototyping method!

Design News N. 033

Design News is your tiny dose of design, technology and other important news, curated monthly by Interwoven Design. In this series we share the latest design news on our favorite topics: Whoop’s 24/7 Health Tracker, the new International Library of Fashion Research in Oslo, Google’s sculpture influence Nest Wifi Pro Router, Anatomic the limited edition 3D knit chair and our very own Perci Emergency Preparedness Vest!

Photo: Aruliden

Whoop’s 24/7 Health Tracker

Since 2013, Whoop has been working on fitness wearables that are designed to be worn 24/7. This is possible by making the product comfortable and durable while also having a device that allows the user to charge their tracker without taking it off. The screenless device communicates heart rate variability, skin temperature, and blood oxygen through a proprietary algorithm. Whoop uses this information to give feedback through an app that works as a fitness and sleep coach. The new Whoop 4.0 strap is 33% smaller than its predecessor along with more accurate and advanced technology.

via Dezeen

Photo: Sharon Drummond

The International Library of Fashion Research opens this month in Oslo

Oslo’s Stasjonsmesterboligen, or “the Station Master’s House” is the new home to the International Library of Fashion Research. The repurposed building houses more that 5,000 pieces of fashion print that were planned to be discarded. Elise By Olsen, the mind behind the operation, explains how the old train station transformed into the ILFR. The space was not originally built for this purpose and while there are challenges, it all came together when they began thinking of the space as a museum rather than a library. The International Library of Fashion Research will not have anything on permanent display but find a way to bring out requested literature, almost like researching digitally, but in real life.

via Wallpaper

Photo: Google

Google’s sculpture influenced Nest Wifi Pro Router

Google’s Nest Wifi Pro Router is influenced by sculpture and designed to compliment an interior aesthetic. The company, who has been releasing routers for years, has left their comfort zone by experimenting with glossy finishes, smooth textures, and soft forms. Not only has the product launched increased functionality and refined aesthetics, but it is also made of 60% recycled material by weight. The Nest Wifi Pro is connected to Google’s Pixel Products through an established color story. Google offers a recycling program where products can be recycled or refurbished.

via Wallpaper

Photo: inCC:

Anatomic, the 3D Knit Chair

Nynke Tynagel, the Dutch artist along with textile pioneers, Byborre and the new label, inCC:, have collaborated to create possibly the most complex 3D knit manufactured ever. The work, Anatomic, is a 3D knit chair that has the visual representation of the inner workings of the human body. This diagram of different textures took 28 development rounds to get the correct combinations of features. These contrasting textures allow the knit to portray biological elements like muscles, nerves, stomach and other organs. Each of the 600 limited edition chairs are manufactured from Dutch oak and recycled polyester. The wooden component that acts as the structural portion of the chair also doubles as a frame when hung on the wall. Anatomic was originally unveiled during Milan Design Week at the Rosanna Orlandi Gallery.

via Dezeen

Photo: INVICTA Ready

Perci Emergency Preparedness Vest

Interwoven Design and INVICTA Ready have paired up to design the Perci Emergency Preparedness Vest. The vest is designed to help families be ready for natural disasters as a quick grab and go tool. The Perci Vest organizes disaster readiness items (safety items, tools, toiletries, first aid, etc.) into 10 uniquely designed pocket locations. It is comfortable, water-repellent, and customizable and works in conjunction with a mobile app that saves all your disaster preparedness plans in one place. A specifically designed series reflective labels create a graphic communications system that indicates what is inside each pocket. A large QR code that connects the Perci Vest with the phone application is found on the interior of the jacket near the waterproof pocket. Interwoven designed and prototyped the functional garment and finalized contents to achieve an easy-to-use, durable and manufacturable product.

via Interwoven

Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

What are E-textiles?

What are E-textiles?

We love innovative technology at Interwoven Design, and when you are talking about wearable technology, one of the most innovative tools at our disposal are e-textiles. What are e-textiles? Well, it can be a bit confusing. We’ll explain what they are, what they aren’t, and why we love them in this Insight article. You can also check out our fantastic interview with LOOMIA e-textiles expert Maddy Maxey to learn more about why e-textiles are a powerful addition to your design toolkit. 

There is a lot of jargon around textiles and clothing with electronic components or capabilities, some of which is official industrial jargon and some of which is convenient non-official jargon that also serves to confuse. Wearable technology, e-textiles, smart textiles, smart clothing, active textiles, functional fabric…what is the difference? 

A working definition

E-textile is short for electronic textile. It’s one of those terms that doesn’t have a standard definition, so even within the industry you hear a range of meanings. The concept involves some combination of electronics and textiles, but there is a spectrum that ranges from combinations that are high on the electronic part and low on the textile part to those that are low on the electronic part and high on the textile part. 

This streetwear brand uses e-textiles to create luminescent garments and footwear. Image via Halo Streetwear.

Here is Textile Learner’s definition

“Electronic textiles, or simply e-textiles, are textiles with embedded electronics and some fiber materials possessing electrical characteristics and providing some useful functions. An electronic textile is a fabric that can conduct electricity. If it is combined with electronic components it can sense changes in its environment and respond by giving off light, sound or radio waves.”

Here is Science Direct’s definition:

“Electronic textiles (e-textiles) are textiles that are, or are part of, electronic components that create systems capable of sensing, heating, lighting or transmitting data.”

We like LOOMIA’s definition best: 

“An electronic textile (e-textile) is a circuit that is either constructed into a textile or created with the intention of being integrated into a textile.”

While they are all valid and reading them gets us closer to an understanding, we find LOOMIA’s the most flexible and useful as it helps us to understand the two main categories of e-textiles: laminated and embedded. Let’s look at that definition again: An e-textile is a circuit that is either constructed into a textile (embedded) or integrated into a textile (laminated). What is a circuit? A circuit is the complete path of an electric current; a series of electronic components that create a loop through which energy can flow. 

The Sound Shirt allows deaf users to feel music on their skin. Image via CuteCircuit.

Embedded e-textiles

Embedded e-textiles feature electronic components woven or knitted into fabric. Directly printing or embroidering a conductive circuit onto a textile also falls into the embedded category. This type of e-textile tends to look and feel more like a textile, and is more likely to be driven from textile engineering. 

Take the example of a vest woven with a blend of cotton and a heat-conductive fiber to keep the user warm. The heat-conductive fiber is a conductive fiber, and any fabric woven with it is also an e-textile. 

Because they must be integrated at the level of the fiber, yarn or into the weave, embedded e-textiles tend to be softer, more sleek, and more comfortable to wear against the body, which makes them the more popular of the two categories. That said, the small scale needed for embedding limits the strength and complexity of the electronic components the final e-textile can contain, and ultimately limits their energy output. 

Laminated e-textiles

In contrast, laminated e-textiles involve electronic components like circuits and sensors that are affixed to an existing textile. These may be sewn on, joined with adhesive, attached to another substrate which is then attached to the textile, or attached with any number of methods. Laminated e-textiles tend to be bulkier and less comfortable than embedded textiles, though the development of increasingly small electronic components means that the gap between embedded and laminated e-textiles is getting smaller every year, with the bulk of laminated options going down and the performance of embedded options going up. An example of a laminated e-textile is a medical gown with a sensor built in to monitor biodata.

In this example, heart monitoring technology has been integrated into a sports bra and an athletic top. Image via Sensoria.

What aren’t e-textiles?

Wearable technology is not synonymous with e-textile though an e-textile might be used to create a wearable technology product. Wearable technology refers to an entire wearable device, not to a component. The same goes for a piece of smart clothing, which might incorporate an e-textile but not constitute one. An active textile or functional fabric refers to a textile with a special performance function like moisture-wicking or thermal regulation, and has nothing to do with electronic integration at all.

The term smart textile may be used to refer to an e-textile but is a larger, broader category that may also include metallic textiles, wearable electronics, fabric with medical applications or fabrics that can respond to stimuli non-electronically, like color-changing textiles that respond to heat levels. Rebeccah Pailes-Friedman, the principal designer at Interwoven Design, has written the book on the subject, Smart Textiles for Designers: Inventing the Future of Fabrics. She defines smart textiles as textiles that use our senses “as a way of gathering information from and about us by means of pressure, temperature, light, low-voltage current, moisture, and other stimuli…Smart textiles “learn” from our bodies and our environments, and react.”

In sum

An e-textile might look more electronic or it might look more textile-like depending on its intended purpose and whether it’s embedded or laminated. The creation of an e-textile might be driven by an electronics engineer, a textile engineer, or neither. Could you incorporate an e-textile into a future project? More and more e-textiles are popping up on the market each season as it is a growing industry and a space worth watching for those interested in innovation and technology.

Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

What is Sustainable Design?

Design is a broad, complex industry that isn’t well understood in mainstream culture. Industrial design, our specialty, is especially vast. In our new AMA (Ask Me Anything) series, industrial designer Rebeccah Pailes-Friedman answers questions about design and process from Instagram and LinkedIn. Do you have any questions about design? Let us know!

Rebeccah is the founder of Interwoven Design Group (that’s us!), an interdisciplinary design consulting practice that creates innovative, thoughtful and efficient products. She has over 25 years of corporate design experience and has held positions as Design Director for Fila, Champion and Nike. She is the author of Smart Textiles for Designers: Inventing the Future of Fabrics, is one of the founding partners of Space Exploration Architecture (SEArch+), and speaks internationally on design, innovation and the future.

Watch the video or read the transcript below for Rebeccah’s definition of sustainable design.

What is sustainable design?

Hi, I’m Rebeccah from Interwoven Design Group, and today you can ask me anything. The question that we’re going to work on today is: What exactly is sustainable design? 

The basic objectives of sustainability are to reduce consumption of non-renewable resources, minimize waste, and create healthy, productive environments.  All of these objectives start in the design process. As designers we have a responsibility to prioritize these objectives when we work through any design process.  But the biggest challenge is when a client’s fiscal and sales goals are out of alignment with these objectives. The four pillars of sustainability are: people, environment, profit and culture. Ideally, as designers we are most effective when we can achieve these goals and meet or exceed a clients’ needs.

If you’re curious about what we do here at Interwoven, you can get in touch. We’d love to hear from you. You can follow us on Instagram @interwoven_design or you can go to our website at getinterwoven.com.

Watch the video or read the transcript below for Rebeccah’s definition of sustainable design.

Want to know more?

Here at Interwoven Design our design niche is the intersection of soft goods and wearable technology. We explained what soft goods design is, and you can check out our Insight article on wearable technology to learn more about that aspect of our work.

Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!

Checkerspot: Sustainable Prototyping Materials

At Interwoven Design we like to incorporate sustainability into our process wherever possible, and this includes sustainable prototyping. In this article we outline our casting process and review the Checkerspot Pollinator Kit, a renewable polyurethane resin that can be used for casting. Our clients rely on us to develop innovative solutions quickly and economically, which means that we move from sketches to prototyping quickly. We iterate potential design directions in-house to reduce turnaround time and keep product development costs low. Making urethane casting molds in-house allows us to do small batch prototyping and testing at a low cost before sending a more resolved solution out to a casting or injection-molding contractor, saving our clients time and money.

How does the casting process work?

Once a design direction has been finalized and is translated into 3D CAD (Computer Aided Design) software, we choose one of two casting strategies:

  1. We design and 3D print a mold based on the negative of the component
  2. We 3D print the component itself and then make a mold from it

The approach we choose is driven by the needs of the final component and the intended manufacturing material. If the final component is meant to be flexible or semi-rigid, like a high density foam part, we print the mold, as a flexible component can be removed from a rigid mold. If the final component is intended to be rigid, we print the part and cast a mold from it, as a flexible mold can be removed from a rigid component.

Once approach is set, the two-part urethane is mixed in the directed ratio to start the chemical reaction that cures the material, turning it from liquid to solid. If we want to tint our resin to more closely approximate the final product, we tint the parts before combining them as urethane can set quickly. The mix is poured carefully into the mold, trying to avoid bubbles that could detract from the final casting. The curing time can vary but it’s good to leave the casting for the maximum time specified as thinner elements will cure more quickly than thicker ones. In later stages of development the casting may be sanded, painted, or finished in some other way to make the prototype feel as close to the final product as possible.

Interwoven Design casting a mold for a prototype.
Casting approach 1: Our design team uses a 3D printed mold to cast a high density foam component for a backpack.

Incorporating sustainable practices

We consider environmental impact throughout the design process, pushing for the products we design to be sustainable to the greatest degree achievable for a given project. Considering sustainability at every stage of a product development cycle is essential to discovering opportunities for environmentally thoughtful design. These stages include research, form, construction, material selection and sourcing, manufacturing, and more. In early stages of a project, finding sustainable strategies for a development phase can take extra time and be restricted by budgets and practical constraints within the project. 

Access to sustainable materials that facilitate low volume in-house casting is a game changer, as the more closely we can approximate final materials, the more accurate our product testing becomes. Not only does it allow our designers and clients to hold, wear and interact with the product, but it allows for high-fidelity field testing and validation. Depending on the product category, a client may choose to test products in-house with their own teams or outsource testing to a team of engineers. The ability to quickly generate and iterate prototypes that closely or precisely mimic the final material keeps testing costs down and helps projects stay on schedule.

Checkerspot Pollinator Kit
The Checkerspot Pollinator Urethane Casting Kit features sustainable packaging and an algae-derived polyurethane resin.

Checkerspot performance casting materials

Checkerspot is a company that focuses on sustainable, high-performance casting materials, serving makers, designers and fabricators. Their innovative materials feature over 50% bio-based, renewable content, challenging a market saturated with oil-derived materials. They manufacture materials by “optimizing microbes to manufacture unique structured oils produced in nature, but not previously accessible at commercial scale.” Each organism contains oil that can be extracted, these lipids are the key component to Checkerspot’s biomaterials. Optimizing the qualities of sustainable materials like algal oil allows for peak product performance for the intended user as well as the environment.

The Checkerspot Pollinator Kit

We had the opportunity to put Checkerspot’s Pollinator Series Cast Urethane to the test in our studio. Our designer’s appreciated the thought put into the labeling of the kit components and instructions for the mixing and casting processes. We also liked the smooth user interaction with the sustainable packaging design. When we poured the mix into our intricate mold, the materials cured evenly and captured fine details, proving that there is no need to sacrifice performance when using sustainable alternatives to mainstream oil-derived casting products.

There you have it!

Here at Interwoven we enjoy pushing the boundaries between design, sustainability, material science and technology. Playing with new materials invigorates our design process as well as our studio-practice. Have you tried working with a new sustainable material recently? Tell us about it! Prototyping sustainably with 3D printing and bio-based material casting is just one way we can participate in the movement towards more responsible, environmentally considerate design. 

Check out our Insight posts to learn more about what we do at Interwoven Design. Sign up for our newsletter and follow us on Instagram and LinkedIn for design news, multi-media recommendations, and to learn more about product design and development!